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Geometrical and wave optics of paraxial beams
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Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or
fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time,
has received comparably little attention so far. The resulting shortage of adequate calculational techniques is
currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light
sources, partially coherent beams become increasingly common. The purpose of this paper is to present a
calculational approach which, utilizing a “variance matrix” representation of paraxial beams, allows for a
straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an
arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless
fashion.[S1063-651%99)03506-0

PACS numbdps): 42.25.Kb

[. INTRODUCTION portant, to the dimensions of the apertures which are
commonly used to define and delimit the beams. Ignoring
The two extreme situations encountered with respect t¢oherence properties, in such situations, may yield huge er-
beam propagation afé—3] (1) coherent propagation, with a rors in beam size and intensity estimates. As, on the other
well defined phase relationship across the whole wave frorftand, the beams are rarely coherent enough to justify a pure
and (2) incoherent propagation, where the phase change¥ave treatment, parual cqherence is becoming the norm,
randomly across the wave front, with a transverse coherendéther than the exception, in x-ray optics. .
length(TLC) much shorter than the transverse dimensions of 1he purpose of this paper is to present a “variance ma-
the beam. The mathematical techniques needed to deal witiX" based calculational approach which allows us to evalu-
these extreme situations are well established. In the first, cAte the propagation of a paraxial beam through an optical
herent case, standard wave propagation techniques are p&¥sStem, in a straightforward manner. Using a propagator de-
fectly adequate. In the second case either ray optics or tHdved from the Kirchhoff diffraction integral as a starting
more sophisticated geometrical phase space approach may Bint. this approach results in a representation covering the
successfully applied. All these techniques are powerfuyyhole range from f_uIIy coherent_ to fully incoherent beams
enough to fully account for beam behavior in the paraxial(-€-, from wave optics to ray optisn a smooth and seam-
approximation, within their respective regimes. Ie_ss quhlon. A general presentation _of this fo_rmallsm is pro-
Between these two regimes, however, lies the gray area dfided in Sec. I, vylth the more technlcgl d_etalls relegated to
partial coherence, where TCLs are comparable to the trandPPendix A. Section Il covers an application of the formal-
verse dimensions of the beam and neither of the techniqud@m to fully and partially coherent Gaussian beams, while
mentioned above may be relied upon. Some general wavkeam-aperture interaction is de_scrlbed in Sec. IV. Some im-
based techniques dealing with partial coherence have bediprtant general comments are included in Sec. V. For com-
devised by Zernike and othef2—4], more than half a cen- pIetenes.s and comparison purposes a bne_f summary of the
tury ago, but, although very general, these approaches afeometrical phase space approach is provided in Appendix
too unwieldy to yield more than qualitative results, in mostB-
cases. As for phase space techniques, these are purely geo-
metrical, thus inherently incoherent. Therefore, as far as Il. GENERAL BEAMS
beam propagation calculations go, the attitude towards the A. Definitions

artial coherence region is just to avoid it as far as possible. . . . . .
P 9 J P The following formalism applies to paraxial beams, with

However, it is not always possible. a single relevant transverse dimensiqrpropagating alon
In x-ray applications, traditionally, beam coherence was Ing N M : rrpropagating 9

not a significant issue. Thanks to the short wavelengths beinrt‘!]1ez axis. A bgam 's represented by a wavg anI'tUde’ either
used, TCLs were usually orders of magnitude smaller tha® Space amplitude)(x) or an angle amplitude/(6) (the
beam dimensions, thus justifying an incoherent treatment ofitter is also referred to as the “momentum amplitude™ since
beam propagation. In fact it took a significant experimentafthe angled and transverse momentum are equivalehbese
effort to create situations where coherence related effec@mplitudes are related through

could have been observgsl,6]. However, with the advent of

third generation synchrotron light sources, the above is no P(X)= 3 /LJ W(0)explikox)d 6,
longer true. Given the small source sizes and long flight 2

paths used on these machines, TCLs of tens and even hun-

dreds of microns are routine. This is comparable to the typi- = /LJ .
cal transverse dimensions of the beams and, even more im- y(9) 2w px)exp—ikexjdx,

2.2
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wherek=2x/\ is the wave vector. The relatior{2.1) are  or else the integrals in Eq2.5 need to be divided by the
formally identical to the position-momentum relations in values of the intensity integrals. Note that the valueéxdf)
quantum mechanic€M) and, similar to QM, position and and({6x) are defined separately as, due to Ei3), they are

angle can be represented using the operators not equal. They are related, though. Defining the symme-
trized value
1d
Xe—=— 7 75—, 1
ik do
XO)r=(O0X)r=7% ({X0) +(Ox 2.
(2.2 (XO)r=(0X)r 2(< ) +(0x)) (2.7
1d
O—— —. it can be shown that
ik dx
From Eq.(2.2) follows the equivalent of the QM uncertainty (x0)=(x0)g— 5—
relation, in the form 2ik
. (.28
1 d d 1
= X |== = 6x X))t =—.
X0— Ox= |k(xdx dxx) e (2.3 (6X)=(x)r 2ik

While the wave amp“tudes as introduced above are the In the fOIIOWIng it will be shown that the determinant of
best representation for coherent beams, partially cohereM is invariant under propagation and focusing. The value of
ones are better represented by a variance mytridefined the determinant is

b
' V1= () ) — (X0 8) = () ) — (02— 717
Vi vxe) (<x2> <x6>) 2.4 Roak?
Ve Vgl (%) (67 . 1
=82— ?, (29)
where the averages used in E2.4) are definedagain simi- 4
lar to QM) as follows: where[see Eq(B4)]
(x?)= j X j > 02¢d0 e=[()(#?)— (x0)2]2 (2.10
~ o~ is the beam emittancéalternatively the definitions=|V|
_ iJ’ dy d_‘ﬁ may also be usgdAt times, especially when dealing with
k2 do do Gaussian beams, it is convenient to use also the inverge of
given by
1 ( dy* d¢
6% = j = j dx 1
() k2] dx dX v _ZW <92> —(XO)g+ =
Q=v 1= 1 2ik
= | 9*6%pdo, o, 1 1
f '70 lﬂ 82_@ _<X0>R_ﬂ <X2>
(2.9
1 (2.11
X6 =.—J *x—dx= f * 0 deo
XO=i | ¥ il Note that where = 1k, V is singular andQ is undefined.
s
= ikJ Tﬂﬂ%de, B. Beam propagation
i
Based on the Kirchhoff diffraction integral, propagation
dy* of a wave front over distanceis described by
(Ox)= kad/ xdxdx———kfz//x
=f o(X ) x(x=x",z)dx’, (2.12

fzp 0—d0

where the indices 0 anrldenote the initial and final wave,
respectively, andsee Appendix Athe propagatoy, in the
In all the calculations above it is assumed that the space anshe-dimensional1D) case discussed here, is given by
angle intensities are normalized, i.e.,

= ] ik o+ i | PR
x(x—=x",z2)=| 5—| expik|z _ )
f |(X)dX=f P (X)Pp(x)dx=1, 2z 27

(2.6 The angle-representation propagation law is obtained by

~ |~ _ Fourier transforming Eq2.12 [see Appendix A, EqgA21)
J |(0)d6’—f g (0)(6)do=1 and(A22)]. The result is
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o —exd kel 1 P\~ ~ - v (Vyot+ Vion)? 1 g2 1

P 0)=expikz| 1= — | |4ho(0) =X(6,2) o( 0). (214 T Ay, 2k V,, 2k
V= =

Note that the angle distributioﬁ(e) is invariant under % Ve % Vo

propagation asj* v,= s . Also, differentiation of Eq. ! ! 2.19

(2.149 yields
Note that the imaginary off-diagonal terms which charac-
_ _ terize a source matrix are proportional tk.1At the geo-
dy, : ?\](dgo .~ metrical limit of k—, these terms tend to 0, in agreement
W:exp{|kz( 1- 7”( —|k20¢0). (219 yith the geometrical source definition. Now, introducing the
notation

de

The angle representation is especially convenient for the

evaluation of the transformation & under propagation. Us- 2 (VxotVa)?
ing Eqgs.(2.14 and (2.195, averages evaluated atcan be %= Vi~ 4V,
expressed as linear combinations of averages evaluated at 0. (2.20
The calculations are straightforward and they yield aﬁzvg(,,
(x%); (x0), a formal identity is established between the results above and
z= (6x), (6%, those of geometrical optigsee Eqs(B9)—(B11)]. Equations
(2.189—(2.20 allow us to describe an arbitrary beam as being
() ot2((X0)o+(0X)o) +Z2( 6% (XO)o+2Z(6)0 propagated, over distanee from a source characterized by
B (0x)o+2(6%) (6% oy,04 (i.e., the source rms. valuesxéndé). Note that Egs.
T (2.19 and(2.20 yield oo 4=¢. This can serve as an alter-
=TVoTl,, (216 npative definition of emittance.

where, again, the indices 0 amdlenote quantities evaluated C. Beam focusing

at the initial and final point, respectively, and the operdtor The action of a focusing device with focal lendgths best

is given by described in the space representation, through
1 z B ikx? -
T,= 0 1) (2.17 Ye(X)=exp — SF Po(X), (2.21

Note that the transformation induced By is emittance pre-

serving as it does not change the determinanVofThese Where the indices 0 ané denote the state before and after
results are identical to the geometrical optics results in Apthe focusing, respectively. Differentiation of Eq2.21)
pendix B[see Eqs(B7) and(B8)]. And, as in Appendix B, Yields

the result(2.16 can be used to characterize a beam in terms

of “source” and distance. A ‘“source”is a location where L, )

(x0)g=0, i.e., the off-diagonal terms &f are purely imagi- %_ p( _ 'k_X> (%_ 'k_X ) (2.22
nary. An inspection of E¢2.16) shows that such condition dx 2F [l dx F "9 ’
occurs upon propagation by

As in the case of propagation, Eq2.21) and(2.22 al-

(x0)gr Vot Vox low us to express the averages appearing in the components

1= "2~ — (%) == 2V, (218 of v, after the focusing is applied, in terms of the original

components. The calculatiori; the space representation,

At the sourceV obtains the form this time yield
2 1.2
<X2>F <X0>F <X >0 <X0>O_E<X >O
| e ()" ’
0 (6%

1 1 1
(Ox)o— E<X2>o (6%)0— E(<X‘9>o+<5’x>o)+ a<X2>o

=TeVoTE, (2.23
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where Now, with the aid of Egs(2.26—(2.28 we can evaluate
1 0 the matrixV or, more exactlyv, since bar averaging needs
to be performed on all the elements. Howelsere Eq(2.5)],
Te= 1 1] (2.249  the exponential phase factor cancels in all the calculations
F and derivatives ofy are eliminated by the bar averaging.

Therefore(x?), as well agx#) and{#x) remain unchanged.
As before, the determinant &f remains unchanged by In (6?), on the other hand, there are terms proportional to the
the transformation. The resul{8.23 and(2.24) are identical square oflp/dx [see, again, Eq2.5] and these terms yield
to the geometric optics results in EqB12) and(B13). Ap- a nonzero contribution. We get
plying Egs.(2.18 and (2.20 to the results above one can

find the new “source” parameters, generated by the focus- — 1 dyg diy i de dyrg . dibo
ing. Expressed in terms of the original parameters the results (6 >D_P dx dx | 2 dx\ dx Yo~ o dx
are
1/dep\?
o Flojog +Z(&) W o |dx
A Ene 1 [ dyj dy 1
24 (F—z4)%02 i _O—OdXJFTfl/%lﬂodX
o Oxt(F—z9)%0y k dx dx 4kT'g
g 0:T, (225)
1
=(0%) o+ —5=7- 2.2
. Flz(F—z9 02— 0] (ot 2irg 2.29
Z = 1
S ot (F-z9%0g Therefore
again the same as the geometrical optics results. (x2), (x6)o
D. Diffuser Vp= 1 . (2.30

(0x)0 (6%t TIRA
A diffuser is a device or a physical process introducing b
random phase shifts in the wave front. It can be mathematig;yte that, unlike in the case of propagation and focusing, the
cally represented by emittance does change here as

ie(X) _ 2
wo(x)=exrl< > )lﬁo(x), (2.26 |vD|:|v0|+4iL2FZ_ (2.3
D

where the indices 0 and refer to the state before and after

the application of the diffuser. Differentiation of E(R.26 Applying Egs.(2.18—(2.20 to the resuli(2.30, the new

beam parameters are obtained. Expressed in terms of the

yields original parameters the results are

d ie(x))[d id

£=ex;{ ‘D; )>(£+§d—i¢o). 2.27) o_ 2, B

7O 1 AT R0
The ¢(x), appearing in Eq9.2.26 and(2.27), is a random
phase(the 3 factor is used for calculational convenience and P 1
carries no physical significancen the following, averaging o y= ot 2Kz (2.32
over random factors is always performed. This averaging,
denoted by a bar over the averaged quantity, is to be under- 4k21~%03
stood as averaging over a set of similar diffusers or, i§ 2= Zs.
1+4kT ;o5

time dependent, as time averaging. The “bar” averaging is
performed before the “angle bracket” averaging and, for bar,

averaging purposes; is assumed to fulfill the relations It is worth noting that the result&2.29—(2.32 are wave

optics results, having no geometrical counterparts. This is

do evidenced by the fact that the changes induced by the dif-
_‘P:o, fuser vanish in the geometrical optics limit, being propor-
dx tional to 1Kk>.
— (2.28 Once the random phase has been introdie#der by the
d_GD _ i source or by roughness in the optical devjcédbecomes a
dx/ r%’ property of the beam itself, separate from the device which

caused it. When viewed as such, the correlation length will
wherel'} is a constantfor a given diffuser parameter, with  be referred to ad’, without a subscript. Now, it is to be
the dimension of length, which serves as a measure of “corexpected that the presence of random phase in one location
relation length.” It will be shown later thaf ; is related to  along the beam propagation path implies the presence of
the transverse coherence length of the beam. random phase in all following locations, possibly with dif-
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ferentI” (which, thus, becomes a function nf Accordingto  Note that, using the definitions of the previous section, \his
Eqg. (2.31), the device responsible for the randomness confepresents a source, as the off diagonal elements are imagi-
tributes (x?)/4k’T'3 to the emittance. But, as the beam nary. Note also thatr,= ko, , thuso, is not an indepen-
propagates onward, the emittance remains constant. Therdent quantity here. The emittance of the source is
fore the relation
1 1
((z0) _ (<(2z2) - 8= 0300= Oy = o (34
Pz)  T1z) (233

which, as mentioned in Sec. Il A is the minimal emittance
must be true for arbitrarg,, z,. Especially, sincéx?(z)) possible. The source represented by 6ql) is fully coher-
=02+ 7%0% [see Eq.(2.16], T at any locatiorz can be re- ent and itsV matrix satisfie§V|=0, thus it is not invertible.
lated toI" at the source through It will be shown later that once some amount of incoherence
is introduced, this singularity disappears.

o o (x?), o cr§22 The angle amplitude is obtained applying a Fourier trans-
I'“(2)=T%(0) T =T%0)| 1+ =k (234 form to Eq.(3.1) [see definitiong2.1)], resulting in
In the following sections the bar average of the expression W)= ( 4k20§) 1/4exp(— ik20262)
explilo(X")—¢(X")]/2} will often be used. Due to the random- 2 X
ness of the phase this expression can be expected to average )
to zero, except whene' is very close toc”. This justifies the _ 1 exd — 9_) (3.5
approximation (2may)t 405)’ '

i ) , where the relationr,= ko, was used. This is of the same
exp 5 Le(x") —e(X)] form as Eq.(3.1). Also, the angle intensity is of same form
as Eq.(3.2), being given by

i de
~ex E(X,_X”)& T 1 6? 36
x=x" ( )—WH)T/ZEX 202/ (3.9
i ¢ ,(de)? o . .
~1+ E(X,_X")ﬁ_g X' —=x") ax The transformation induced iW under propagation by
distancez is evaluated applying Eq2.16) to Eq. (3.3, re-
(X' —x")2 (X' —x")2 sulting in
:1_T~6XF{_T>. (235) .
2,2 2 2
oxtz°0y zoy— 2K
Il. GAUSSIAN BEAMS V,= 1 . (3.7
A. Coherent beams zo5+ 2ik o5

In order to proceed beyond the general results of the pre-
vious section, a specific beam profile needs to be assumeblowever, in this case one can actually calculate the propa-
Gaussian beam profiles, due to the fact that the Gaussiggated amplitude itself, not just the variance matrix. Using
form is maintained under propagation and focusing, are ed=Qs.(2.12 and(2.13 we get
pecially convenient. The simplegnormalized Gaussian

wave amplitude is given by 1 —ik\|2
lﬂz(X):m(Z—ﬂ) exp(ikz)
1 x? X
lb(X):—mEXP(——z), 3.9 '2 e x')2
(2m03) 40y xf exp — 2+ik—( " axe
4oy 2z

yielding an intensity of

ik2) (oy—izl2koy)Y?
1 X2 =|eXQIKZ) —> 55 2174
|(X)= —21/28X — =7 (3.2) (0'X+Z 14K Ux)
(2moy) 205 1
X
Using Eq.(2.5) to evaluate all the needed averages, the cor- [27( 02+ 22 14Kk2a2) YA
responding variance matrix can be constructed. The result is , . )
x“(1—iz/2koy) 38
X — 55| . .
2 _ 1 2 1 N T 202+ D) 3.8
X 2ik X 2ik
V= 1 = . (33 But the first factor(in square bracketsn this result can be

_i —— — o5 ignored, being just ar-independent phase factor. As for the
2ik  4k“oy 2ik reminder, using the substitutigsee Eq(3.7)]
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z’ 1 X2 e(X)
R ot 2 : = — i :
K22~ Ox Zo5=(x?), (3.9 P(x) WGX[{ 302 == (3.19
it can be rewritten as where
do)®_ 1 3.1
x?(1—2ika2z) dx/ T2 (319

1
i (X)= >~ 172X — —2—> , (3.10
’ (2m(x%)) 4(x%) The presence of the random phaseneans that all the fol-

lowing results are obtained using “bar” averaging. Thus,
strictly speaking, a bar should appear above all the results.
For the sake of notational brevity this will be dispensed with.
The intensityl (x) at the source is not changed by the
2 presence ofp. The variance matri®/, on the other hand,

1
1 ,(X) =5 (X) (X)) = Wexy{ - %5) (3.1)  changes. Using Eq$2.30 and(3.3), we get

yielding

2 1 2 1
7x 2k 7 T2k
Thus, the Gaussian form is maintained. As for the propagay, _ _ (3.16
tion of the angle amplitude, applyin@2.14 to Eq. (3.5 1 1 /1 N 1 1 2 '
yields 2ik 4k?| o2 ' T? 2ik !
exp(ikz) 0%(1+2iko2z) and
%(@-WGXF{ _T (3.12 2
ag
and |V|:Fxr2' (3.17
T * 1 02 . .
1(0)=97(0)P,(0)= (2—2)1,26X ~ 5.2 Thus the random phase increases both the emittémute
T To (3.13 thatV is not singular anymopeand the angular divergence
' which is now given by
Taking into account thatr§=<02), Egs. (3.12 and (3.13
are formally identical to Eq93.10 and(3.1)) 2_i i+ i 31
00_4k2 0_2 1"2 . ( . &
X

B. Partially coherent beams

The source in Eq3.1) may be modified by an application _ Due to the randomness @f a closed form calculation of
of a “diffuser” (see Sec. Il Dwith a correlation length", llf(e) is now impossiblel (), on the other hand, can be
yielding calculated, being given by

/2+X1/2

T(6) @* (O)P(0)= — o \/_J ex —2—+ I [(p(X Y—o(X")]—iko(x’ —x”))dx dx’. (3.19

Using Eq.(2.395 and the substitutioitA13), Eqg. (3.19 can - 1 92
be converted to the double Gaussian integral 1(0)= 5 ——=meXp — 52/ (3.2
(2moy) 207

~ k 1
(0= 5 —— |
(6) 2w \/27705
) ) ) is obtained, as in Eq3.13, though with a differentr.
u v v The situation with beam propagation is similst, can be
Xexp —| =5+ =+ =5—ik6v | |du dv. (3.20 _ 1beam propag 2
205 8oy 8l easily evaluated, yielding again the res(8t7). A closed
form evaluation ofi,(x) is not possible but a calculation of
Performing the integration and usingoft 1M2=4k?0%  14(X) is doable. Using the propagat(.13 and the fact that
[see Eq«(3.18)], the result 1,(X) = 3 (X) ,(x), the propagated intensity is obtained as
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kK 1 ,
IZ(X):E\/TO-)%[ eX[{Ik

Applying, again, the substitutio®A13), Eq. (2.35, and Eq.
(3.18, Eqg. (3.22 transforms into

B k 1
|z(X)—m—Wme

w2 k2oor?
X exp — + +

27.’& 2 du dv.

ikv(u—x)
z

(3.23

Integration of Eq.(3.23, using the relation(x?)=¢?>
+zza§ from Eq. (3.7) which is still valid here, yields

I,(X)= ! ex;{— X ) (3.29
0 mod O T 2 |

which has the same form as E@.11). As for T,(6), it is

M. MERON, P. J. VICCARO, AND B. LIN PRE 59
(X_X/)Z_(X_X//)2 X/2+X//2+ ’ , o dyc” 32
. | ~ oz T plel) el )] ax'ax. (322
[
Thus
(%) oy’ '

in full agreement with Eq.(2.33. At this stage a new,
z-dependent length paramet&y may be introduced, defined
through

1 1 . 1 o
A7 () TE (X%

z
Using Eq.(3.18 and the definition of the beam emittance
Eq. (3.30 can be rewritten as

1
_+_
0')2( r?2

. (3.30

B <X2>1/2 B <X2>1/2

A= 2koyo, 2ke

(3.3)

invariant under propagation as mentioned in Sec. I B. Thug, large values of (x2>~zzo§ thus, far enough away
it remains the same as in E@.21), i.e., of the same form as  om source Eq(3.3)) results in

in Eq. (3.13.

While ¢,(x) cannot be evaluated directly in the presence

of the random phase, one can try, by analogy with(8d.0,
to guess a result of the form

B 1 p( x2(1-2ika%2)  o(X,2)
zpz(x)—Wex - 403 ]
(3.25
where
de(x,2)\2 1
( ‘Pé):(z)) o (3.26

z

HereT', is a z-dependent correlation lengtsee Sec. 11 D

The functional form of thiz dependence can be established
by comparing the elements &f, as calculated using the

function (3.25), with the direct resuli(3.16. Now, as was
discussed in Sec. |1 D, only th&?) element is influenced by
the presence ap. The calculation is similar to Eq2.29 and
it yields

1+4k’Z%02 1

—+ J—
(x%) r;

1

m = 0'2, (327)

(%)=

z AZ — AZ
Az~ 2koy B 477'0'x_) Amha= \/47T(Tx.

(3.32

But the expression on the right-hand side of B2332) is just

the transverse coherence length of the beam, at distance
from the source, with/4 7o, being the effective source size.
Therefore we can also identify4mA, as the transverse co-
herence length of the beam. Sinkg depends of’, [see Eq.
(3.30] which, in turn, is proportional to the correlation
lengthT" [see Eq(3.29] the relationship betweehi and the
transverse coherence length of the beam has therefore been
established.

IV. APERTURES
A. Position aperture

The effect of apertures on the beam can be conveniently
evaluated using Gaussian apertures. Specifically, the effect
of a Gaussian position aperture on the amplitude is repre-
sented by

where the second equality is forced by the necessity of an

agreement with Eq(3.16. Reorganization of the terms which

yields
1 4K03((x?)—Z%02)—1 (Uo2+1M?) 021

r? (x3) (x3)

2
X
(/fA(X):eX[< ~ 2] ¥, 4.9
amounts to multiplying the intensity by

exp(—x%/2d?). The parameted is a measure of the aperture
width (standard aperture of width may be approximated by
a Gaussian one by settim=w/\/4). All the averages cal-

culated here are of the form of EGA11), i.e.,

(o>=Nf 5 (X"){O}atho(x")dx"dX", (4.2
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where O is the operator being calculated afi@}, results  shows that the only difference is in terms proportional to 1/
from an integration oD with the propagators and the aper- and 1k? which tend to zero at the geometrical limit &f
ture functiondsee Eq(A17)]. The normalization constait  — e,
is needed sincg(x) from Eq.(4.1) is not normalized. As Evaluation of the determinant of , yields, after some
the base function/y(x), the Gaussian amplituded.14) is  algebra,
used, with bar averaging to account for the random phases.
Using the substitutioitA13) and Eq.(2.35 yields d2 ( 1 ) d2 v

] Rl v A4 DR C )
W5 (<) holx') M0

1 X'24x"2 which is the same as in the geometric chsee Eq.(B22)].
= 2ma? ex;{ o2 T E[QD(X')—(P(X”)]) Following from Eq.(4.7), the new emittance is obtained as
TOy X

1 u? V2 V2

= - + +
\/27703(8)({ (Ef 53 S_FZ)
2
—2+k20'§1/2>
X

1 { 1/u
= ex —_—
270 2\o
The result(4.3) and the values of the brackets in Egs.

(A19) and (A20) are all that is needed to calculate the ele- B. Angle (momentum) aperture
ments of the variance matri, resulting from the aperture

application. First, though, the normalization constat
needs to be evaluated. Using the definition from Appendi

A, with the result of Eq.(4.3 and{1}4 supplied by Eq.
(A20), yields

d2

1 (x?)
42~ &7+ (x%)

82+ 4k2d2) . (48)

8,2:|VA|+

Using Eq. (4.9 it can easily be shown that=1k—sg’
. (4.3 = 1k, regardless of the aperture size. THisis an absolute
lower bound on emittance, in agreement with Sec. Il A.

X N

The case of an angle aperture is very similar to the one
discussed above. The action of such aperture is described, in
%he angle representation, by

2

(7
. -1 Pal ‘9)=eXP< - @)WJ( 0), 4.9
N:(f 1#3(X”)l,bo(X'){l}ddX’dx”)

2
2moy

so that the angle intensity is multiplied by exp/252).
1’7 Here 6§ is a measure of the aperture’s angular width. The

calculations are slightly different than the previous case
since, even though the aperture action occurs in angle space,
-1 the Gaussian amplitud8.14), in position space, is still used
as the base function. Therefore the mixed propagators from
Eq. (A24) are used in the preliminary averaging ahy;
(4.4 replaces{ }4 throughout the calculations. Specifically, the

_ ) _ _calculation of the normalization constaht utilizes {1}
The integral in Eq(4.4) is of the standard double-Gaussian from Eq. (A30), resulting in

variety and, usingx?)= o2+ 7205, the final result is simply

k2d?
( 27z?

27° 202z

K2v2(d?+Z%202)  u?  ikup
xXexp — ———s—o—— ———|dudp

-1
2 1/2 " ! ! "
N= 1+Q) 45 N=(f 5 (<) ro(X {1} 0 dx
g . .
k2d2 1/2 1 1/2
The remaining integrations involved in calculating the ele- = (m) (m f
ments ofV, are of the same type and will be skipped for X
brevity. The resulting/ is given by k2v2(82+02) U2 -1
Xexp ——————— - |dudv| |,
d2 2 20‘X
d2+(x?) o
2 _ which yields
) XOR™ S ?
X
d2+<X2> 82 d2+<X2> ’ 0_2 1/2 02 1/2
(0t —0 g7 <02>+?+W N= 1+5—§ = 1+<5—2>> . (4.11)
(4.6)

Using the value ofN, the result(4.3) and the brackets
Where(02)=cr§ and e =00, is the emittance before the from Eqgs.(A29) and (A30), all the elements of/, may be
aperture. Comparison with the geometrical resyB21) evaluated according to E¢A25). The result is
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TABLE Il. Aperture modified source parameters and geometri-

sults. cal results.
Parameter Position aperture Andlaomentuny aperture ~ Parameter Position aperture  Angleomentum aperture
o'y A2+ (o2 +E0D)] (1+ )0k o'l do? 0%
I+ of+ i+ o+ Zo) o +of
o' A Fo o' (P+0?) o Fo
—+ —_— S —— —_—
P+ o2+ 205 K &+ 0% P+ o2+ 205 F+a5
z oz Zg z d’z Zs
I+ ofc+ m( A+ oy + Zof) Pt o?
2
_ 3 V. SUMMARY AND CONCLUSIONS
VA= 56 | o
As has been shown, the formalism described in the pre-
| &Y 8H(6%) 52+(6%) ceding sections can deal with the important aspects of beam
(x%)+ ?Jr AK2 5% (X0)r— 2ik 82 propagation, focusing and interaction with apertures, cover-
X 2+(62) , ing in a smooth, seamless fashion the whole range from
<0X>RW (6% purely coherent wave description to the purely incoherent
i

(4.12

geometric phase space one. It is, of course, limited to
paraxial beams since, as was mentioned in Sec. Il and in
Appendix A, only terms up to second order iR{x’) are

where, againg is the emittance before the aperture. Notemaintained in the phase of the propagator. This is a generous
that Eq.(4.12 could have been obtained straight from Eq. limitation, though, sufficient to cover both the Fraunhofer

(4.6), by switching the roles af and 6 (and replacingl with
8). Comparison with the geometrical resiB23) shows,

and the Fresnel ranges.
It can be asked how much farther can this formalism be

again, that apart from terms which go to 0 at the geometricageneralized and what other optical elements may be modeled
limit, the results are identical. Evaluation of determinant ofysing this description? To answer this one should note that,

V, yields

52 2

1
VAl = m(sz— W) = gz+—<027|V| (4.13

and, therefore

1 B 2 <02>
a2 8%+ (6%

e'?=|Vu|+ g2+ 4k252). (4.14

This is formally identical to Eq(4.8) and the comment at the
end of Sec. IV A applies here too.

C. Modified source parameters

in view of the discussion in Secs. II-IV, the distinction be-
tween beam profile and optical elements is somewhat artifi-
cial. An arbitrary beam profile may be viewed as the result of
an application of a set of optical elements to a plane wave
which (as far asx dependence is considejeid represented

by a constant. The Gaussian profile in E§.14), for ex-
ample, results from an application of a Gaussian aperture and
a diffuser to a plane wave. Therefore the question above can
be rephrased as “what is the most general beam profile that
needs to be considered”?

Since the propagator phase has been limited to terms up to
second order inX—x"), the most general continuous profile
conceivable is of the form of ekP(x)] whereP is a qua-
dratic polynomial, i.e.P=a+bx+cx? (the discussion here

The modified source parameters, following the aperturess in the space representation, it can be performed in the

can be evaluated applying Eq2.18 and(2.20 to theV,
matrices in Eqs(4.6) and (4.12. The results are listed in

angle representation as well, yielding same resuitew, the
constant term ifP is of no consequence as it only influences

Table |, expressed in terms of the initial values and of thehe normalization. As for the linear term, its real part can be

dimensionless parameters

1 .
nd=2k—d00for position aperture,

(4.15

for angle aperture.

15~ 2k 0,

eliminated by shifting the origin ok. The imaginary part
correspondsas can be readily verifiedo a redirection of the
beam along an axis making a constant angle withzthgis
and can be eliminated by a redefinition of thexis. Thus,
only the quadratic part d? is irreducible. This part, in gen-
eral, includes a real and imaginary term. The real term cor-
responds to an apertufsee Sec. IYand the imaginary to a
focusing elementsee Sec. I & No further analytical ele-

The magnitude of they parameters provides a measure of thements are needed or, indeed, possible, at this level of ap-
importance of wave effects, for a given aperture. Note thaproximation. The formalism is, therefore, complete. Of
both values tend to 0 at the geometrical limit and that, at th&ourse, one may consider periodar even aperiodicstacks
same limit, the results in Table | converge to those of Tableof the elements which have already been discussed, thus cov-

Il as calculated in Appendix B.

ering the topic of diffraction gratings. These though, being
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constructed of the already defined building blocks, are not It can be immediately verified, by inspection, that(r)
inherently new elements. =x(—r), thus complex conjugation of is equivalent to

Note that the diffusefsee Sec. Il Dis not included in the reversal of propagation direction. In the specific case’of
discussion above. This is a nonanalytical element which=z, Eq.(A4) yields singularity and, is undefined. However
serves to make the connection from the coherent to the incahe limit of y for z’—z can be defined. It is easy to show,
herent representation, bridging over the partially coherent rethrough direct integration, that, fa' #z, y fulfills the rela-
gion tion
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APPENDIX A: PROPERTIES OF THE KIRCHHOFE On the other hand, substitutirgj=2z into the left-hand side
PROPAGATOR of Eg. (A5) and integrating yields the result
Given the amplitude of a scalar wave on a suitable surface R e . .,
S the amplitude of the wave in an arbitrary poitan be x(p—p"z=2")x(p"—p",2"—2)dp"=6(p—p'),

evaluated using the Kirchhoff diffraction integfdl,3]. The (AB)

well known result is

where § is a Dirac delta function. Comparison of Eq45)

S d(A6) yield

exp(ik|F— ') (7 dS and(A®) yields
(A1) lim x(p—p',z—2")=6(p—p"). (A7)

Z—Z

—ik +
¢(F):f ik(cosa+cosp)

4a|r—7"|

wherek is the magnitude of the wave vectdt,is a point on
the surfaceS and (cosy+cosp) is the inclination factor. Itis possible, using the results above, to describe the gen-
This general result can be easily adapted for the case @fal propagation process, where a wave front emitted from a
paraxial propagation. It is convenient, in such case, to sepgource located at=z, interacts with a series of optical ele-
rate longitudinal and transverse coordinatesfas(j,z), ~ Ments located aty,...,z, along the propagation axis. As-
wherez is the general direction of the beam propagation anduming that the action of the element locatedzat(for m
ﬁ:(xyy) is orthogona| to this direction. The paraxia| ap- =1,...,n) amounts to muItipIication of the wave amplitude
proximation can be summed up by the conditigh-5’|  PY Um(pm), an iteration of Eq(A3) yields the result

<|z—-7'|, where @,z) and (p’,z') are points along the
wave front propagation path. This condition implies that the
angles appearing in the inclination factor are small, thus
(cosa+cosp)~2, and justifies the approximation

'ﬂ(ﬁ,z):f W(po.,20) X(pP1—P0,21— Zo)U1(p1) -

XX(Pn=Pn-1:Zn—Zn—1)Un(pn)

> =72
|F—F’|~Z—Z’+ |P_P |, ) (A2) Xx(p=pn,Z2—2,)dpg - -dpp . (A8)
2(z—272")

The similarity between Eq(A8) and quantum-mechanical
The second term in the approximatioh2) may be omitted path-integral formalism is noteworthy.
in the denominator of Eq(Al), where its contribution is The formalism described so far applies to the most gen-
negligible. However, when multiplied bl, this term may eral paraxial situation, where the wave front at any specific
still contribute significantly to the phase of the exponent inlocation z depends on both transverse coordinates. This pa-
Eq. (Al), thus it needs to be maintained there. Performingper, though, deals with the “reduced” case, where the origi-
the appropriate substitutions while assumimghich can be nal wave and all the optical elements vary in only one trans-
done without loss of generalityhat the surfac&is orthogo-  verse dimensioriwhich will be taken ax, for definiteness
nal toz (thusdS=dgp’), Eq. (A1) can be rewritten as and the other transverse dimension can be integrated away.

Introducing the notation),(x) = #(x,z) and performing the

y integration in Eq(A3), with y given by Eq.(A4), the wave

llf(r):l!f(ﬁyz):f Y(p' 2 )x(p—p',z=2")dp’, propagation in thigtransverse, 1Dcase is found to be de-
(A3) scribed by

where the propagatoy is explicitly given by l//z(X):f bo(X ) x(x=x",2)dX’, (A9)
—ik
x(F=r")=x(p—p',z2=2")= 2mz=2) where the “reduced” propagator is given by
" , |ﬁ_ﬁ/|2 , - 1/2 " |X—X’|2 ALO
Xexpi (z—z)+m . (A4) x(Xx—=x',2)= 2m7 exp ik| z+ 7 . (A10)
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The wave amplitude can be used to evaluate average val- X2 X2
ues. Assuming that ¢ is normalized [i.e., that {0(X)}q= [ EXF{ Ty O(X)EXF< - W) ] (A17)
T (X) y(x)dx=1], the average value of an operatd(x)
is given by It should be noted that the aperture amplitude changes the
normalization of the wave function. Therefore, assuming the
<O>:J #* (X)O(X) (x)dx. (A11) original ¢ was nprmalized, averages of the for(Al7)
should be multiplied by a normalization factor of the form
Using Eq.(A9), Eg.(A11) can be converted into an average . -1
involving the source amplitudé, as N= f Py (X"){L}aiho(x")dx dx”
2 -1
(0)= f Y5 (X") iho( X' )dx' dX” f X* (x=X",2)0(x) :( f %‘(x”){exr{ - ZX—dZ)]lﬂo(X')dX’dx”
X x(x—x",z)dx (A18)

. . on N In the following N will be ignored, with the understanding
_J Yo (X"){O}o(x")dx"dX", (A12) that it is to be included when the final averages are calcu-
lated. As before, the main interest is in the averages of the

where{O} is the result of preaveraging(x) with the propa-  quadratic quantities?, 62, and 6+ 6x). The results are
gators alone. It is convenient, for the purpose of the integra-

tion, to replacex’,x” with the variablesl, v defined through ) ) k2d?y?
XFa=d 1= ——[{1}a,
X'=u—v/2, X'=u+v/2. (A13)
2 H 2422
It can be immediately verified that the Jacobian of this trans- 1 _&7/, _ikur K%y
o . : (x60+ 6x) 7— {1}a,
formation is 1. Using the new variables we get 2 d z z
A19
x(X—x",2)x* (x—x",2) (A19)
_ ) 1 d? 1 ik d?v)?
_ k o ik(x"—x") X_x’—x” 0= ezt 2 T 2|V — {1}q,
27wz z 2
where
k ikv(x—u)
= 2z ex 7 . (A14) kd k2d2V2 ikuy
{1}"=¢2_ o —| ozt || (A20)
Multiplying (A14) by x" and integrating ovek, it can be e
shown that If the initial wave is given in the angle representation, the
7 d\" results are simpler. The Fourier transform ypffrom Eq.
m_(ye 22 (A10) is
DX =|ut o dv) 8(v), (A15)
where § is the Dirac delta function and the delta derivatives ")2(6’,2)=f x(w,z)exp( —ik ow)dw
are used in the standard mathematical meaning. Especially,
we have{1}=§(v). Other than 1, the most commonly oc- [ —ik| T2 _ w?
curring operators are?, 62, and K6+ 6x), wheredis, up to “\ 2z expik| z+ > — 6w |dw

a constant, a derivative with respectdtfsee Eq(2.2)]. The )
averages of these operators involve integrals of the form =ex+kz( 0 ”

(A15). With some algebra we get Y

> (A21)

2

2zu z Now, Eg.(2.1) yields
{X2}=U25(V)+T5 (V)—Fév(v), q y

~ k
U (0)= \/ZJ P (x)exp(—ikox)dx
= \/%f Po(X")exp(—ikox")dx’

X J x(x—x",z)exd —ik#(x—x")]dx

1 _u z
E(X0+ 0X) —m& (V)—Ezai(v), (A16)

2 :_i 4
{0 =— 28,

At times it may be convenient to include additional fac-
tors, beyond the propagators, in the preaveraging. When 62
dealing with the Gaussian aperture case the wave fungtion =exp{ikz< 1- —)
is multiplied by an “aperture amplitude” of exp(x%/4d?). 2
Thus all the partial averages are of the form (A22)

Yol 0)=X(6,2)Po( 6).
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Therefore the propagation is represented by a simple multi-
plication and calculations of averages are done using the
source amplitudes directly, with no intermediate integration.
At times, though, it is convenient to use a mixed representa-

tion, Wheresz( 0) is represented in terms gf,(x). From Eq.
(A22)

~ 6%\~
lﬂz(a):eXF{ikZ(l_?”lﬂo(ﬁ)
[k _ 6?
= ﬂf exp[lk z(l—?)—xb’ }wo(x)dx
=f L(X,0,2) ho(x)dX, (A23)

where the “mixed” propagator/(x, 6,z) is identified as

{(x,0,2)= \/%exp[ik 1-—|—x80

02
4+77

] . (A24)
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1
{x2}5=(W+5222+(u+ik522v)2){1}5,
1 iku
(—(x0+0x)} =6%z| 1+ _V_k252V2>{1}5,
2 s z
(A29)
{62} 5= 6%(1—-K?6%v%){1} 5,
where
n ké p{ <k252v2> (A30)
=——exg — .
5 \/E 2

APPENDIX B: GEOMETRICAL PHASE SPACE
APPROACH TO BEAM PROPAGATION

The discussion of beam propagation in this appendix is
purely geometrical. Wave properties are ignored and the
beam is represented by an intensity distribution in one trans-

verse dimensior(thus a 2D phase spaceé,(x,6), which

Using the mixed representation, averages are calculateifopagates along theaxis. For the sake of convenienkgis

through

<O>=f llfé(x”)llfo(x’)dx’dx”f *(x",0,2)
X0O(0)¢(x',6,z)do

= J 5 (X"){O}ho(x")dx’ dX", (A25)

where{O} is now a partial average ovér It is easy to show,
using the variables,v from Eq. (A13), that

k
g(x’,a,z)g*(x”,e,z)zEexp(ikev). (A26)

Multiplying Eq. (A26) by 6" and integrating ovep yields

1d

{6"= (m 5) 8(v), (A27)

similar to Eq.(A15). Especially we havél}= 5(v).

Equations(A24) and (A25) can be used to evaluate the

assumed to be normalized, i.¢l,(x, §)dx dé=1. Using the
notation

X

o) (B1)

p=

for an individual phase space point, the distributlgn for
any specific value of, can be characterized by the matrix

(3 (x0)| [V
(6x) <62>>:(vex

fo)

VGG) , (BZ)

V=(pp")= (
where

<x2)=f 1,(x,0)x?dx dé,
(0%)= f 1,(x,0)6%dx d, (B3)

(x0)y=(6x)= f I,(x,0)x6dx dé.

In the paraxial approximatiop transforms linearly under

averages ok® 67, and 6+ 6x), replicating the results of the action of propagation and/or optical elements, .,
Eqg. (A16). More interesting, though, is the case of a Gauss=Tp whereT is a linear operator. According to the defini-
ian “momentum aperture,” the effect of which is to multiply tion (B2), the resulting transformation of is V' =TVT ",

the angle amplitude by exp(¢?/4562), similar to the position
aperture discussed above. Thus, similar to El7), the
partial averages are of the form

2

452

2

O( 0)ex;{ — %) ) . (A28)

Up to a normalization factofas in Eq.(A18), with {1}

{0(0)} 5= [ ex;{ -

Since, as a consequence of Liouville’s theorem, the determi-

nant of V remains invariant under all such transformations,
the operatorT must fulfill |T|=+1. The invariance ofV/|
allows us to define the invariant emittance of the beahy

2= |V|=(x*)(%) = (x6)*. (B4)

Of special interest are locations along the beam axis

whereV is diagonal. Such locations will be referred to as

replacing{1}4] which, again, is needed here, the averages ofsources.” In the following it will be shown that any beam

the quadratic factors are now

has a “source.” At the source location
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(Uf( 0 ) This transformation changes the original beam to one corre-
V= (B5) sponding to a new source with different source parameters
0 o oy,0,,Zs. The new parameters can be found using Egs.
and (B9) and (Bll) Expressed in terms of the original param-
eters the results are
g’= (Ti(r%. (B6)

F2g2 0'0
But, ase is invariant, Eq.(B6) viewed as an expression of U’%W’
in terms of the source’s spatial and angular dimensions is Tx s/ o

valid everywhere, thus the relatien= 0,0, can be used as

an alternative definition of emittance. o o2+ (F—2z)2%03
The operator corresponding to a propagation over a dis- 09~ F2 ' (B14)
tancez is
1 z 2= F[ZS (F— ZS 06/ x]
T=lo 1) ®7) S oIt (F-2)%0

Note that, indeed,T|=1.V, in this case, transforms accord-

The effect of apertures is easiest to analyze for Gaussian

ing to beams. These are beams witknarmalized intensity distri-
2 bution given by
V=T VTT_ Vxx+ Z(Vx(9+vﬁx)+z V(%} Vx0+ZV00
e Voxt2ZVyy Vo '
(B8) ) 1 p( 1 *TQ*) (515
. . p)= ex =p Qp/,
Especially, choosing 2me 2
Vxﬂ
ETETTY,, B9 where
yields 1/ (6% —(x6)
Q=V1=—( ) (B16)
V2, o 2\ —(0x)  (x)
Vxx_ \/ 0 'V 0
V= Vg =| Vg (B10) .
Now, the effect of a general Gaussian aperture can be repre-
0 Voo 0 Vi sented by

Therefore, a beam with an arbitraky can be described as
propagating over distance;, from a source with sizes
oy ,04, given by

1
I’(ﬁ)=l(ﬁ)exn( Zstp) (B17)

02:8_2: _ V_>2<0 whereS is a symmetric, semipositive operator. For beams of
AV Vo' the form (B15) the action of the aperture amounts to the
(B11)  Substitution
0'0: Vgg .

Q' =0Q+S. (B18)

Focusing of the beam can be similarly described. A de-

vice with focal lengthF is represented by the operator Based on the fact that both andS are positive operators, it

is easy to show that an aperture reduces the emittance as

1 0
Te= 1 | (B12) 1
F -2=1Q'[=[Ql= = (B19)
yielding
The basic apertures are position and ang®mentum
A =TFVTE apertures. A position aperture is represented by
1
VXX Vx() vax 1 0
—

- s=|d , (B20)

1 1 1 0 0

VGX_ vax 00— E(Vx0+vax)+ ?Vxx

(B13)

generating the neW) andV operators
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1 <02>+j; ~(x)

Q':Sz
—(x) ()
@ (O 00
. (B21)

TEA | (0 ()5

-V’

The new emittance is

2.2
gm0 (B22)
d?+(x?)

The angle(momentum aperture calculation is similar,
with an 1/5? term at the(66) location ofS instead of the H?
term at the(xx) location[see Eq.(B20)]. The newQ andV
in this case are

GEOMETRICAL AND WAVE OPTICS OF PARAXIAL BEAMS
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NG
’ 2 ’
=— \/
Q g2 —(6Ox) <X2>+ % -
2 2 e’
) X2+ —  (x6)
= 2T o & , (B23)
8°+(6%) )
(0x) (69
and the new emittance is
522
8’2252+—<027. (824)

The modified source parameters generated by both types

of apertures are listed in Table II.

[1] S. G. Lipson and H. LipsornQptical Physics 2nd ed.(Cam-
bridge University Press, Cambridge, England, 1981

[2] M. Born and E. Wolf Principles of Optic§Pergamon, Oxford,
1993.

[3] J. W. GoodmansStatistical OpticsWiley, New York, 1985.

[4] F. Zernike, PhysicéAmsterdam 5, 785 (1938.

[5] B. Lin, M. L. Schlossman, M. Meron, S. M. Williams, Z.
Huang, and P. J. Viccaro, Appl. Phys. LetB, 906 (1998.

[6] B. Lin, M. L. Schlossman, M. Meron, S. M. Williams, Z.
Huang, and P. J. Viccaro, Phys. Rev5B, 8025(1998.

[7] S. K. Sinha, M. Tolan, and A. Gibaud, Phys. Rev5B 2740
(1998.



