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Geometrical and wave optics of paraxial beams

M. Meron, P. J. Viccaro, and B. Lin
The Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637

~Received 30 October 1998!

Most calculational techniques used to evaluate beam propagation are geared towards either fully coherent or
fully incoherent beams. The intermediate partial-coherence regime, while in principle known for a long time,
has received comparably little attention so far. The resulting shortage of adequate calculational techniques is
currently being felt in the realm of x-ray optics where, with the advent of third generation synchrotron light
sources, partially coherent beams become increasingly common. The purpose of this paper is to present a
calculational approach which, utilizing a ‘‘variance matrix’’ representation of paraxial beams, allows for a
straightforward evaluation of wave propagation through an optical system. Being capable of dealing with an
arbitrary degree of coherence, this approach covers the whole range from wave to ray optics, in a seamless
fashion.@S1063-651X~99!03506-0#

PACS number~s!: 42.25.Kb
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I. INTRODUCTION

The two extreme situations encountered with respec
beam propagation are@1–3# ~1! coherent propagation, with
well defined phase relationship across the whole wave f
and ~2! incoherent propagation, where the phase chan
randomly across the wave front, with a transverse cohere
length~TLC! much shorter than the transverse dimensions
the beam. The mathematical techniques needed to deal
these extreme situations are well established. In the first,
herent case, standard wave propagation techniques are
fectly adequate. In the second case either ray optics or
more sophisticated geometrical phase space approach m
successfully applied. All these techniques are powe
enough to fully account for beam behavior in the parax
approximation, within their respective regimes.

Between these two regimes, however, lies the gray are
partial coherence, where TCLs are comparable to the tr
verse dimensions of the beam and neither of the techniq
mentioned above may be relied upon. Some general w
based techniques dealing with partial coherence have b
devised by Zernike and others@2–4#, more than half a cen
tury ago, but, although very general, these approaches
too unwieldy to yield more than qualitative results, in mo
cases. As for phase space techniques, these are purely
metrical, thus inherently incoherent. Therefore, as far
beam propagation calculations go, the attitude towards
partial coherence region is just to avoid it as far as possi
However, it is not always possible.

In x-ray applications, traditionally, beam coherence w
not a significant issue. Thanks to the short wavelengths b
used, TCLs were usually orders of magnitude smaller t
beam dimensions, thus justifying an incoherent treatmen
beam propagation. In fact it took a significant experimen
effort to create situations where coherence related eff
could have been observed@5,6#. However, with the advent o
third generation synchrotron light sources, the above is
longer true. Given the small source sizes and long fli
paths used on these machines, TCLs of tens and even
dreds of microns are routine. This is comparable to the ty
cal transverse dimensions of the beams and, even more
PRE 591063-651X/99/59~6!/7152~14!/$15.00
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portant, to the dimensions of the apertures which
commonly used to define and delimit the beams. Ignor
coherence properties, in such situations, may yield huge
rors in beam size and intensity estimates. As, on the o
hand, the beams are rarely coherent enough to justify a p
wave treatment, partial coherence is becoming the no
rather than the exception, in x-ray optics@7#.

The purpose of this paper is to present a ‘‘variance m
trix’’ based calculational approach which allows us to eva
ate the propagation of a paraxial beam through an opt
system, in a straightforward manner. Using a propagator
rived from the Kirchhoff diffraction integral as a startin
point, this approach results in a representation covering
whole range from fully coherent to fully incoherent beam
~i.e., from wave optics to ray optics! in a smooth and seam
less fashion. A general presentation of this formalism is p
vided in Sec. II, with the more technical details relegated
Appendix A. Section III covers an application of the forma
ism to fully and partially coherent Gaussian beams, wh
beam-aperture interaction is described in Sec. IV. Some
portant general comments are included in Sec. V. For co
pleteness and comparison purposes a brief summary o
geometrical phase space approach is provided in Appe
B.

II. GENERAL BEAMS

A. Definitions

The following formalism applies to paraxial beams, wi
a single relevant transverse dimensionx, propagating along
thez axis. A beam is represented by a wave amplitude, eit
a space amplitudec(x) or an angle amplitudec̃(u) ~the
latter is also referred to as the ‘‘momentum amplitude’’ sin
the angleu and transverse momentum are equivalent!. These
amplitudes are related through

c~x!5A k

2p E c̃~u!exp~ ikux!du,

~2.1!

c̃~u!5A k

2p E c~x!exp~2 ikux!dx,
7152 ©1999 The American Physical Society
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PRE 59 7153GEOMETRICAL AND WAVE OPTICS OF PARAXIAL BEAMS
wherek52p/l is the wave vector. The relations~2.1! are
formally identical to the position-momentum relations
quantum mechanics~QM! and, similar to QM, position and
angle can be represented using the operators

x↔2
1

ik

d

du
,

~2.2!

u↔
1

ik

d

dx
.

From Eq.~2.2! follows the equivalent of the QM uncertaint
relation, in the form

xu2ux5
1

ik S x
d

dx
2

d

dx
xD52

1

ik
. ~2.3!

While the wave amplitudes, as introduced above, are
best representation for coherent beams, partially cohe
ones are better represented by a variance matrixV, defined
by

V5S Vxx Vxu

Vux Vuu
D 5S ^x2& ^xu&

^ux& ^u2&
D , ~2.4!

where the averages used in Eq.~2.4! are defined~again simi-
lar to QM! as follows:

^x2&5E c* x2c dx52
1

k2 E c̃*
d2

du2 c̃ du

5
1

k2 E dc̃*

du

dc̃

du
du,

^u2&5
1

k2 E dc*

dx

dc

dx
dx52

1

k2 E c*
d2

dx2 c dx

5E c̃* u2c̃ du,

~2.5!

^xu&5
1

ik E c* x
dc

dx
dx52

1

ik E c̃*
d

du
uc̃ du

5
1

ik E c̃u
dc̃*

du
du,

^ux&5
1

ik E c*
d

dx
xc dx52

1

ik E cx
dc*

dx
dx

52
1

ik E c̃* u
dc̃

du
du.

In all the calculations above it is assumed that the space
angle intensities are normalized, i.e.,

E I ~x!dx5E c* ~x!c~x!dx51,

~2.6!

E Ĩ ~u!du5E c̃* ~u!c̃~u!du51
e
nt

nd

or else the integrals in Eq.~2.5! need to be divided by the
values of the intensity integrals. Note that the values of^xu&
and^ux& are defined separately as, due to Eq.~2.3!, they are
not equal. They are related, though. Defining the symm
trized value

^xu&R5^ux&R5
1

2
~^xu&1^ux&! ~2.7!

it can be shown that

^xu&5^xu&R2
1

2ik
,

~.28!

^ux&5^ux&R1
1

2ik
.

In the following it will be shown that the determinant o
V is invariant under propagation and focusing. The value
the determinant is

uVu5^x2&^u2&2^xu&^ux&5^x2&^u2&2^xu&R
22

1

4k2

5«22
1

4k2 , ~2.9!

where@see Eq.~B4!#

«5@^x2&^u2&2^xu&R
2 #1/2 ~2.10!

is the beam emittance~alternatively the definition«5uVu
may also be used!. At times, especially when dealing wit
Gaussian beams, it is convenient to use also the inverse oV,
given by

Q5V215
1

«22
1

4k2

S ^u2& 2^xu&R1
1

2ik

2^xu&R2
1

2ik
^x2&

D .

~2.11!

Note that when«5 1
2 k, V is singular andQ is undefined.

B. Beam propagation

Based on the Kirchhoff diffraction integral, propagatio
of a wave front over distancez is described by

cz~x!5E c0~x8!x~x2x8,z!dx8, ~2.12!

where the indices 0 andz denote the initial and final wave
respectively, and~see Appendix A! the propagatorx, in the
one-dimensional~1D! case discussed here, is given by

x~x2x8,z!5S 2 ik

2pzD
1/2

expF ikS z1
ux2x8u2

2z D G . ~2.13!

The angle-representation propagation law is obtained
Fourier transforming Eq.~2.12! @see Appendix A, Eqs.~A21!
and ~A22!#. The result is
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c̃z~u!5expF ikzS 12
u2

2 D G c̃0~u!5x̃~u,z!c̃0~u!. ~2.14!

Note that the angle distributionĨ (u) is invariant under
propagation asc̃z* c̃z5c̃0* c̃0 . Also, differentiation of Eq.
~2.14! yields

dc̃z

du
5expF ikzS 12

u2

2 D G S dc̃0

du
2 ikzuc̃0D . ~2.15!

The angle representation is especially convenient for
evaluation of the transformation ofV under propagation. Us
ing Eqs. ~2.14! and ~2.15!, averages evaluated atz can be
expressed as linear combinations of averages evaluated
The calculations are straightforward and they yield

Vz5S ^x2&z ^xu&z

^ux&z ^u2&z
D

5S ^x2&01z~^xu&01^ux&0!1z2^u2&0

^ux&01z^u2&0

^xu&01z^u2&0

^u2&0
D

5TzV0Tz
T , ~2.16!

where, again, the indices 0 andz denote quantities evaluate
at the initial and final point, respectively, and the operatoT
is given by

Tz5S 1 z

0 1D . ~2.17!

Note that the transformation induced byTz is emittance pre-
serving as it does not change the determinant ofV. These
results are identical to the geometrical optics results in A
pendix B @see Eqs.~B7! and ~B8!#. And, as in Appendix B,
the result~2.16! can be used to characterize a beam in ter
of ‘‘source’’ and distance. A ‘‘source’’is a location wher
^xu&R50, i.e., the off-diagonal terms ofV are purely imagi-
nary. An inspection of Eq.~2.16! shows that such condition
occurs upon propagation by

z52zs52
^xu&R

^u2&
52

Vxu1Vux

2Vuu
. ~2.18!

At the source,V obtains the form
e

t 0.

-

s

V5S Vxx2
~Vxu1Vux!

2

4Vuu
2

1

2ik

1

2ik
Vuu

D 5S «2

Vuu
2

1

2ik

1

2ik
Vuu

D .

~2.19!

Note that the imaginary off-diagonal terms which chara
terize a source matrix are proportional to 1/k. At the geo-
metrical limit of k→`, these terms tend to 0, in agreeme
with the geometrical source definition. Now, introducing t
notation

sx
25Vxx2

~Vxu1Vux!
2

4Vuu
,

~2.20!
su

25Vuu ,

a formal identity is established between the results above
those of geometrical optics@see Eqs.~B9!–~B11!#. Equations
~2.18!–~2.20! allow us to describe an arbitrary beam as be
propagated, over distancezs from a source characterized b
sx ,su ~i.e., the source rms. values ofx andu!. Note that Eqs.
~2.19! and~2.20! yield sxsu5«. This can serve as an alte
native definition of emittance.

C. Beam focusing

The action of a focusing device with focal lengthF is best
described in the space representation, through

cF~x!5expS 2
ikx2

2F Dc0~x!, ~2.21!

where the indices 0 andF denote the state before and aft
the focusing, respectively. Differentiation of Eq.~2.21!
yields

dcF

dx
5expS 2

ikx2

2F D S dc0

dx
2

ikx

F
c0D . ~2.22!

As in the case of propagation, Eqs.~2.21! and ~2.22! al-
low us to express the averages appearing in the compon
of V, after the focusing is applied, in terms of the origin
components. The calculations~in the space representation
this time! yield
VF5S ^x2&F ^xu&F

^ux&F ^u2&F
D 5S ^x2&0 ^xu&02

1

F
^x2&0

^ux&02
1

F
^x2&0 ^u2&02

1

F
~^xu&01^ux&0!1

1

F2 ^x2&0

D ,

5TFV0TF
T, ~2.23!
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where

TF5S 1 0

2
1

F
1D . ~2.24!

As before, the determinant ofV remains unchanged b
the transformation. The results~2.23! and~2.24! are identical
to the geometric optics results in Eqs.~B12! and~B13!. Ap-
plying Eqs. ~2.18! and ~2.20! to the results above one ca
find the new ‘‘source’’ parameters, generated by the foc
ing. Expressed in terms of the original parameters the res
are

s8x
25

F2sx
2su

2

sx
21~F2zs!

2su
2 ,

s8u
25

sx
21~F2zs!

2su
2

F2 , ~2.25!

zs85
F@zs~F2zs!su

22sx
2#

sx
21~F2zs!

2su
2 ,

again the same as the geometrical optics results.

D. Diffuser

A diffuser is a device or a physical process introduci
random phase shifts in the wave front. It can be mathem
cally represented by

cD~x!5expS iw~x!

2 Dc0~x!, ~2.26!

where the indices 0 andD refer to the state before and aft
the application of the diffuser. Differentiation of Eq.~2.26!
yields

dcD

dx
5expS iw~x!

2 D S dc0

dx
1

i

2

dw

dx
c0D . ~2.27!

The w(x), appearing in Eqs.~2.26! and ~2.27!, is a random
phase~the 1

2 factor is used for calculational convenience a
carries no physical significance!. In the following, averaging
over random factors is always performed. This averag
denoted by a bar over the averaged quantity, is to be un
stood as averaging over a set of similar diffusers or, ifw is
time dependent, as time averaging. The ‘‘bar’’ averaging
performed before the ‘‘angle bracket’’ averaging and, for b
averaging purposes,w is assumed to fulfill the relations

dw

dx
50,

~2.28!

S dw

dxD 2

5
1

GD
2 ,

whereGD is a constant~for a given diffuser! parameter, with
the dimension of length, which serves as a measure of ‘‘c
relation length.’’ It will be shown later thatGD is related to
the transverse coherence length of the beam.
-
lts

ti-

,
r-

s
r

r-

Now, with the aid of Eqs.~2.26!–~2.28! we can evaluate
the matrixV or, more exactlyV̄, since bar averaging need
to be performed on all the elements. However@see Eq.~2.5!#,
the exponential phase factor cancels in all the calculati
and derivatives ofw are eliminated by the bar averagin
Thereforê x2&, as well aŝ xu& and^ux& remain unchanged
In ^u2&, on the other hand, there are terms proportional to
square ofdw/dx @see, again, Eq.~2.5!# and these terms yield
a nonzero contribution. We get

^u2&D5
1

k2 E Fdc0*

dx

dc0

dx
1

i

2

dw

dx S dc0*

dx
c02c0*

dc0

dx D
1

1

4 S dw

dxD 2

c0* c0Gdx

5
1

k2 E dc0*

dx

dc0

dx
dx1

1

4k2GD
2 E c0* c0dx

5^u2&01
1

4k2GD
2 . ~2.29!

Therefore

VD5S ^x2&0 ^xu&0

^ux&0 ^u2&01
1

4k2GD
2
D . ~2.30!

Note that, unlike in the case of propagation and focusing,
emittance does change here as

uVDu5uV0u1
^x2&

4k2GD
2 . ~2.31!

Applying Eqs.~2.18!–~2.20! to the result~2.30!, the new
beam parameters are obtained. Expressed in terms of
original parameters the results are

s8x
25sx

21
zs

2su
2

114k2GD
2 su

2 ,

s8u
25su

21
1

4k2GD
2 , ~2.32!

zs85
4k2GD

2 su
2

114k2GD
2 su

2 zs .

It is worth noting that the results~2.29!–~2.32! are wave
optics results, having no geometrical counterparts. This
evidenced by the fact that the changes induced by the
fuser vanish in the geometrical optics limit, being propo
tional to 1/k2.

Once the random phase has been introduced~either by the
source or by roughness in the optical devices! it becomes a
property of the beam itself, separate from the device wh
caused it. When viewed as such, the correlation length
be referred to asG, without a subscript. Now, it is to be
expected that the presence of random phase in one loca
along the beam propagation path implies the presence
random phase in all following locations, possibly with di
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ferentG ~which, thus, becomes a function ofz!. According to
Eq. ~2.31!, the device responsible for the randomness c
tributes ^x2&/4k2GD

2 to the emittance. But, as the bea
propagates onward, the emittance remains constant. Th
fore the relation

^x2~z1!&
G2~z1!

5
^x2~z2!&
G2~z2!

~2.33!

must be true for arbitraryz1 , z2 . Especially, sincêx2(z)&
5sx

21z2su
2 @see Eq.~2.16!#, G at any locationz can be re-

lated toG at the source through

G2~z!5G2~0!
^x2&z

^x2&0
5G2~0!S 11

su
2z2

sx
2 D . ~2.34!

In the following sections the bar average of the express
exp$i@w(x8)2w(x9)#/2% will often be used. Due to the random
ness of the phase this expression can be expected to av
to zero, except wherex8 is very close tox9. This justifies the
approximation

expS i

2
@w~x8!2w~x8!# D

'expS i

2
~x82x9!

dw

dxU
x5x8

D
'11

i

2
~x82x9!

dw

dx
2

1

8
~x82x9!2S dw

dxD 2

512
~x82x9!2

8G2 'expS 2
~x82x9!2

8G2 D . ~2.35!

III. GAUSSIAN BEAMS

A. Coherent beams

In order to proceed beyond the general results of the
vious section, a specific beam profile needs to be assum
Gaussian beam profiles, due to the fact that the Gaus
form is maintained under propagation and focusing, are
pecially convenient. The simplest~normalized! Gaussian
wave amplitude is given by

c~x!5
1

~2psx
2!1/4expS 2

x2

4sx
2D , ~3.1!

yielding an intensity of

I ~x!5
1

~2psx
2!1/2expS 2

x2

2sx
2D . ~3.2!

Using Eq.~2.5! to evaluate all the needed averages, the c
responding variance matrix can be constructed. The resu

V5S sx
2

2
1

2ik

1

2ik

1

4k2sx
2

D 5S sx
2

2
1

2ik

1

2ik
su

2 D . ~3.3!
-

re-

n

age

e-
d.

an
s-

r-
is

Note that, using the definitions of the previous section, thisV
represents a source, as the off diagonal elements are im
nary. Note also thatsu5 1

2 ksx , thussu is not an indepen-
dent quantity here. The emittance of the source is

«5sxsu5sx

1

2ksx
5

1

2k
, ~3.4!

which, as mentioned in Sec. II A is the minimal emittan
possible. The source represented by Eq.~3.1! is fully coher-
ent and itsV matrix satisfiesuVu50, thus it is not invertible.
It will be shown later that once some amount of incoheren
is introduced, this singularity disappears.

The angle amplitude is obtained applying a Fourier tra
form to Eq.~3.1! @see definitions~2.1!#, resulting in

c̃~u!5S 4k2sx
2

2p D 1/4

exp~2 ik2sx
2u2!

5
1

~2psu
2!1/4expS 2

u2

4su
2D , ~3.5!

where the relationsu5 1
2 ksx was used. This is of the sam

form as Eq.~3.1!. Also, the angle intensity is of same form
as Eq.~3.2!, being given by

Ĩ ~u!5
1

~2psu
2!1/2expS 2

u2

2su
2D . ~3.6!

The transformation induced inV under propagation by
distancez is evaluated applying Eq.~2.16! to Eq. ~3.3!, re-
sulting in

Vz5S sx
21z2su

2 zsu
22

1

2ik

zsu
21

1

2ik
su

2 D . ~3.7!

However, in this case one can actually calculate the pro
gated amplitude itself, not just the variance matrix. Usi
Eqs.~2.12! and ~2.13! we get

cz~x!5
1

~2psx
2!1/4 S 2 ik

2pzD
1/2

exp~ ikz!

3E expS 2
x82

4sx
2 1 ik

~x2x8!2

2z Ddx8

5Fexp~ ikz!
~sx2 iz/2ksx!

1/2

~sx
21z2/4k2sx

2!1/4G
3

1

@2p~sx
21z2/4k2sx

2!#1/4

3expS 2
x2~12 iz/2ksx

2!

4~sx
21z2/4k2sx

2!
D . ~3.8!

But the first factor~in square brackets! in this result can be
ignored, being just anx-independent phase factor. As for th
reminder, using the substitution@see Eq.~3.7!#
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sx
21

z2

4k2sx
2 5sx

21z2su
25^x2&, ~3.9!

it can be rewritten as

cz~x!5
1

~2p^x2&!1/4expS 2
x2~122iksu

2z!

4^x2& D , ~3.10!

yielding

I z~x!5cz* ~x!cz~x!5
1

~2p^x2&!1/2expS 2
x2

2^x2& D . ~3.11!

Thus, the Gaussian form is maintained. As for the propa
tion of the angle amplitude, applying~2.14! to Eq. ~3.5!
yields

c̃z~u!5
exp~ ikz!

~2psu
2!1/4expS 2

u2~112iksu
2z!

4su
2 D ~3.12!

and

Ĩ z~u!5c̃z* ~u!c̃z~u!5
1

~2psu
2!1/2expS 2

u2

2su
2D .

~3.13!

Taking into account thatsu
25^u2&, Eqs. ~3.12! and ~3.13!

are formally identical to Eqs.~3.10! and ~3.11!

B. Partially coherent beams

The source in Eq.~3.1! may be modified by an applicatio
of a ‘‘diffuser’’ ~see Sec. II D! with a correlation lengthG,
yielding
a-

c~x!5
1

~2psx
2!1/4expS 2

x2

4sx
2 1 i

w~x!

2 D , ~3.14!

where

S dw

dxD 2

5
1

G2 . ~3.15!

The presence of the random phasew means that all the fol-
lowing results are obtained using ‘‘bar’’ averaging. Thu
strictly speaking, a bar should appear above all the res
For the sake of notational brevity this will be dispensed wi

The intensityI (x) at the source is not changed by th
presence ofw. The variance matrixV, on the other hand
changes. Using Eqs.~2.30! and ~3.3!, we get

V5S sx
2

2
1

2ik

1

2ik

1

4k2 S 1

sx
2 1

1

G2D D 5S sx
2

2
1

2ik

1

2ik
su

2 D ~3.16!

and

uVu5
sx

2

4k2G2 . ~3.17!

Thus the random phase increases both the emittance~note
that V is not singular anymore! and the angular divergenc
which is now given by

su
25

1

4k2 S 1

sx
2 1

1

G2D . ~3.18!

Due to the randomness ofw, a closed form calculation o

C̃(u) is now impossible.Ĩ (u), on the other hand, can b
calculated, being given by
Ĩ ~u!5c̃* ~u!c̃~u!5
k

2p

1

A2psx
2 E expS 2

x821x92

4sx
2 1

i

2
@w~x8!2w~x9!#2 iku~x82x9! Ddx8dx9. ~3.19!
f

s

Using Eq.~2.35! and the substitution~A13!, Eq. ~3.19! can
be converted to the double Gaussian integral

Ĩ ~u!5
k

2p

1

A2psx
2 E

3expF2S u2

2sx
2 1

n2

8sx
2 1

n2

8G22 ikuv D Gdu dn. ~3.20!

Performing the integration and using 1/sx
211/G254k2su

2

@see Eq.~3.18!#, the result
Ĩ ~u!5
1

~2psu
2!1/2expS 2

u2

2su
2D , ~3.21!

is obtained, as in Eq.~3.13!, though with a differentsu .
The situation with beam propagation is similar.Vz can be

easily evaluated, yielding again the result~3.7!. A closed
form evaluation ofcz(x) is not possible but a calculation o
I z(x) is doable. Using the propagator~2.13! and the fact that
I z(x)5cz* (x)cz(x), the propagated intensity is obtained a
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I z~x!5
k

2pz

1

A2psx
2 E expS ik

~x2x8!22~x2x9!2

2z DexpS 2
x821x92

4sx
2 1

i

2
@w~x8!2w~x9!# Ddx8dx9. ~3.22!
hu
s

c

ed
e

f a
s

ce
.
-

n

been

ntly
ffect
re-

y
e

Applying, again, the substitution~A13!, Eq. ~2.35!, and Eq.
~3.18!, Eq. ~3.22! transforms into

I z~x!5
k

2pz

1

A2psx
2 E

3expF2S u2

2sx
2 1

k2su
2n2

2
1

ikn~u2x!

z D Gdu dn.

~3.23!

Integration of Eq. ~3.23!, using the relation^x2&5sx
2

1z2su
2 from Eq. ~3.7! which is still valid here, yields

I z~x!5
1

A2p^x2&
expS 2

x2

2^x2& D , ~3.24!

which has the same form as Eq.~3.11!. As for Ĩ z(u), it is
invariant under propagation as mentioned in Sec. II B. T
it remains the same as in Eq.~3.21!, i.e., of the same form a
in Eq. ~3.13!.

While cz(x) cannot be evaluated directly in the presen
of the random phase, one can try, by analogy with Eq.~3.10!,
to guess a result of the form

cz~x!5
1

~2p^x2&!1/4expS 2
x2~122iksu

2z!

4^x2&
1 i

w~x,z!

2 D ,

~3.25!

where

S dw~x,z!

dx D 2

5
1

Gz
2 . ~3.26!

Here Gz is a z-dependent correlation length~see Sec. II D!.
The functional form of thisz dependence can be establish
by comparing the elements ofV, as calculated using th
function ~3.25!, with the direct result~3.16!. Now, as was
discussed in Sec. II D, only thêu2& element is influenced by
the presence ofw. The calculation is similar to Eq.~2.29! and
it yields

^u2&5
1

4k2 S 114k2z2su
2

^x2&
1

1

Gz
2D 5su

2, ~3.27!

where the second equality is forced by the necessity o
agreement with Eq.~3.16!. Reorganization of the term
yields

1

Gz
2 5

4k2su
2~^x2&2z2su

2!21

^x2&
5

~1/sx
211/G2!sx

221

^x2&

5
sx

2

G2^x2&
. ~3.28!
s

e

n

Thus

Gz
2

^x2&
5

G2

sx
2 , ~3.29!

in full agreement with Eq.~2.33!. At this stage a new,
z-dependent length parameterLz may be introduced, defined
through

1

Lz
2 5

1

^x2&
1

1

Gz
2 5

sx
2

^x2& S 1

sx
2 1

1

G2D . ~3.30!

Using Eq.~3.18! and the definition of the beam emittance«,
Eq. ~3.30! can be rewritten as

Lz5
^x2&1/2

2ksxsu
5

^x2&1/2

2k«
. ~3.31!

For large values ofz, ^x2&'z2su
2, thus, far enough away

from source Eq.~3.31! results in

Lz'
z

2ksx
5

lz

4psx
→A4pLz'

lz

A4psx

. ~3.32!

But the expression on the right-hand side of Eq.~3.32! is just
the transverse coherence length of the beam, at distanz
from the source, withA4psx being the effective source size
Therefore we can also identifyA4pLz as the transverse co
herence length of the beam. SinceLz depends onGz @see Eq.
~3.30!# which, in turn, is proportional to the correlatio
lengthG @see Eq.~3.29!# the relationship betweenG and the
transverse coherence length of the beam has therefore
established.

IV. APERTURES

A. Position aperture

The effect of apertures on the beam can be convenie
evaluated using Gaussian apertures. Specifically, the e
of a Gaussian position aperture on the amplitude is rep
sented by

cA~x!5expS 2
x2

4d2Dc~x!, ~4.1!

which amounts to multiplying the intensity b
exp(2x2/2d2). The parameterd is a measure of the apertur
width ~standard aperture of widthw may be approximated by
a Gaussian one by settingd5w/A4p!. All the averages cal-
culated here are of the form of Eq.~A11!, i.e.,

^O&5NE c0* ~x9!$O%dc0~x8!dx8dx9, ~4.2!
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where O is the operator being calculated and$O%d results
from an integration ofO with the propagators and the ape
ture functions@see Eq.~A17!#. The normalization constantN
is needed sincecA(x) from Eq. ~4.1! is not normalized. As
the base functionc0(x), the Gaussian amplitude~3.14! is
used, with bar averaging to account for the random pha
Using the substitution~A13! and Eq.~2.35! yields

c0* ~x9!c0~x8!

5
1

A2psx
2

expS 2
x821x92

4sx
2 1

i

2
@w~x8!2w~x9!# D

5
1

A2psx
2

expF2S u2

2sx
2 1

n2

8sx
2 1

n2

8G2D G
5

1

A2psx
2

expF2
1

2 S u2

sx
2 1k2su

2n2D G . ~4.3!

The result~4.3! and the values of the brackets in Eq
~A19! and ~A20! are all that is needed to calculate the e
ments of the variance matrixVA resulting from the aperture
application. First, though, the normalization constantN
needs to be evaluated. Using the definition from Appen
A, with the result of Eq.~4.3! and $1%d supplied by Eq.
~A20!, yields

N5S E c0* ~x9!c0~x8!$1%ddx8dx9 D 21

5F S k2d2

2pz2D 1/2S 1

2psx
2D 1/2E

3expS 2
k2n2~d21z2su

2!

2z2 2
u2

2sx
22

ikun

z D du dnG21

.

~4.4!

The integral in Eq.~4.4! is of the standard double-Gaussia
variety and, usinĝx2&5sx

21z2su
2, the final result is simply

N5S 11
^x2&
d2 D 1/2

. ~4.5!

The remaining integrations involved in calculating the e
ments ofVA are of the same type and will be skipped f
brevity. The resultingVA is given by

VA5
d2

d21^x2&

3S ^x2& ^xu&R2
d21^x2&

2ikd2

^ux&R1
d21^x2&

2ikd2 ^u2&1
«2

d2 1
d21^x2&

4k2d4

D ,

~4.6!

where ^u2&5su
2 and «5sxsu is the emittance before th

aperture. Comparison with the geometrical results~B21!
s.

.
-

x

-

shows that the only difference is in terms proportional to 1k
and 1/k2 which tend to zero at the geometrical limit ofk
→`.

Evaluation of the determinant ofVA yields, after some
algebra,

uVAu5
d2

d21^x2& S «22
1

4k2D5
d2

d21^x2&
uVu, ~4.7!

which is the same as in the geometric case@see Eq.~B22!#.
Following from Eq.~4.7!, the new emittance is obtained a

«825uVAu1
1

4k2 5
d2

d21^x2& S «21
^x2&

4k2d2D . ~4.8!

Using Eq. ~4.8! it can easily be shown that«> 1
2 k→«8

> 1
2 k, regardless of the aperture size. Thus1

2 k is an absolute
lower bound on emittance, in agreement with Sec. II A.

B. Angle „momentum… aperture

The case of an angle aperture is very similar to the o
discussed above. The action of such aperture is describe
the angle representation, by

c̃A~u!5expS 2
u2

4d2D c̃~u!, ~4.9!

so that the angle intensity is multiplied by exp(2u2/2d2).
Here d is a measure of the aperture’s angular width. T
calculations are slightly different than the previous ca
since, even though the aperture action occurs in angle sp
the Gaussian amplitude~3.14!, in position space, is still used
as the base function. Therefore the mixed propagators f
Eq. ~A24! are used in the preliminary averaging and$ %d
replaces$ %d throughout the calculations. Specifically, th
calculation of the normalization constantN utilizes $1%d
from Eq. ~A30!, resulting in

N5S E c0* ~x9!c0~x8!$1%ddx8dx9 D 21

5F S k2d2

2pz2D 1/2S 1

2psx
2D 1/2E

3expS 2
k2n2~d21su

2!

2
2

u2

2sx
2D du dnG21

,

~4.10!

which yields

N5S 11
su

2

d2 D 1/2

5S 11
^u2&
d2 D 1/2

. ~4.11!

Using the value ofN, the result~4.3! and the brackets
from Eqs.~A29! and ~A30!, all the elements ofVA may be
evaluated according to Eq.~A25!. The result is
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VA5
d2

d21^u2&

3S ^x2&1
«2

d2 1
d21^u2&

4k2d4 ^xu&R2
d21^u2&

2ikd2

^ux&R

d21^u2&
2ikd2 ^u2&

D ,

~4.12!

where, again,« is the emittance before the aperture. No
that Eq.~4.12! could have been obtained straight from E
~4.6!, by switching the roles ofx andu ~and replacingd with
d!. Comparison with the geometrical result~B23! shows,
again, that apart from terms which go to 0 at the geometr
limit, the results are identical. Evaluation of determinant
VA yields

uVAu5
d2

d21^u2& S «22
1

4k2D5
d2

d21^u2&
uVu ~4.13!

and, therefore

«825uVAu1
1

4k2 5
d2

d21^u2& S «21
^u2&

4k2d2D . ~4.14!

This is formally identical to Eq.~4.8! and the comment at th
end of Sec. IV A applies here too.

C. Modified source parameters

The modified source parameters, following the apertu
can be evaluated applying Eqs.~2.18! and ~2.20! to the VA
matrices in Eqs.~4.6! and ~4.12!. The results are listed in
Table I, expressed in terms of the initial values and of
dimensionless parameters

hd5
1

2k dsu
Ufor position aperture,

~4.15!

hd5
1

2kdsx
Ufor angle aperture.

The magnitude of theh parameters provides a measure of t
importance of wave effects, for a given aperture. Note t
both values tend to 0 at the geometrical limit and that, at
same limit, the results in Table I converge to those of Ta
II as calculated in Appendix B.

TABLE I. Aperture modified source parameters and wave
sults.

Parameter Position aperture Angle~momentum! aperture

s8x
2

d2@sx
21hd

2~sx
21zs

2su
2!#

d21sx
21hd

2~d21sx
21zs

2su
2!

(11hd
2)sx

2

s8u
2 S d21sx

2

d21sx
21zs

2su
2 1hd

2Dsu
2

d2su
2

d21su
2

zs8 d2zs

d21sx
21hd

2~d21sx
21zs

2su
2!

zs
.

al
f

s,

e

t
e
e

V. SUMMARY AND CONCLUSIONS

As has been shown, the formalism described in the p
ceding sections can deal with the important aspects of b
propagation, focusing and interaction with apertures, cov
ing in a smooth, seamless fashion the whole range fr
purely coherent wave description to the purely incoher
geometric phase space one. It is, of course, limited
paraxial beams since, as was mentioned in Sec. II an
Appendix A, only terms up to second order in (x2x8) are
maintained in the phase of the propagator. This is a gene
limitation, though, sufficient to cover both the Fraunhof
and the Fresnel ranges.

It can be asked how much farther can this formalism
generalized and what other optical elements may be mod
using this description? To answer this one should note t
in view of the discussion in Secs. II–IV, the distinction b
tween beam profile and optical elements is somewhat ar
cial. An arbitrary beam profile may be viewed as the resul
an application of a set of optical elements to a plane w
which ~as far asx dependence is considered! is represented
by a constant. The Gaussian profile in Eq.~3.14!, for ex-
ample, results from an application of a Gaussian aperture
a diffuser to a plane wave. Therefore the question above
be rephrased as ‘‘what is the most general beam profile
needs to be considered’’?

Since the propagator phase has been limited to terms u
second order in (x2x8), the most general continuous profi
conceivable is of the form of exp@P(x)# whereP is a qua-
dratic polynomial, i.e.,P5a1bx1cx2 ~the discussion here
is in the space representation, it can be performed in
angle representation as well, yielding same results!. Now, the
constant term inP is of no consequence as it only influenc
the normalization. As for the linear term, its real part can
eliminated by shifting the origin ofx. The imaginary part
corresponds~as can be readily verified! to a redirection of the
beam along an axis making a constant angle with thez axis
and can be eliminated by a redefinition of thez axis. Thus,
only the quadratic part ofP is irreducible. This part, in gen
eral, includes a real and imaginary term. The real term c
responds to an aperture~see Sec. IV! and the imaginary to a
focusing element~see Sec. II C!. No further analytical ele-
ments are needed or, indeed, possible, at this level of
proximation. The formalism is, therefore, complete.
course, one may consider periodic~or even aperiodic! stacks
of the elements which have already been discussed, thus
ering the topic of diffraction gratings. These though, bei

- TABLE II. Aperture modified source parameters and geome
cal results.

Parameter Position aperture Angle~momentum! aperture

s8x
2

d2sx
2

d21sx
2

sx
2

s8u
2

~d21sx
2!su

2

d21sx
21zs

2su
2

d2su
2

d21su
2

zs8 d2zs

d21sx
2

zs
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constructed of the already defined building blocks, are
inherently new elements.

Note that the diffuser~see Sec. II D! is not included in the
discussion above. This is a nonanalytical element wh
serves to make the connection from the coherent to the in
herent representation, bridging over the partially coherent
gion

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. CH
9522232, and by a State of Illinois IBHE grant.

APPENDIX A: PROPERTIES OF THE KIRCHHOFF
PROPAGATOR

Given the amplitude of a scalar wave on a suitable surf
S, the amplitude of the wave in an arbitrary pointrW can be
evaluated using the Kirchhoff diffraction integral@1,3#. The
well known result is

c~rW !5E 2 ik~cosa1cosb!

4purW2rW8u
exp~ ikurW2rW8u!c~rW8!dSW ,

~A1!

wherek is the magnitude of the wave vector,rW8 is a point on
the surfaceS, and (cosa1cosb) is the inclination factor.
This general result can be easily adapted for the cas
paraxial propagation. It is convenient, in such case, to se
rate longitudinal and transverse coordinates asrW5(rW ,z),
wherez is the general direction of the beam propagation a
rW 5(x,y) is orthogonal to this direction. The paraxial a
proximation can be summed up by the conditionurW 2rW 8u
!uz2z8u, where (rW ,z) and (rW 8,z8) are points along the
wave front propagation path. This condition implies that t
angles appearing in the inclination factor are small, th
(cosa1cosb)'2, and justifies the approximation

urW2rW8u'z2z81
urW 2rW 8u2

2~z2z8!
. ~A2!

The second term in the approximation~A2! may be omitted
in the denominator of Eq.~A1!, where its contribution is
negligible. However, when multiplied byk, this term may
still contribute significantly to the phase of the exponent
Eq. ~A1!, thus it needs to be maintained there. Perform
the appropriate substitutions while assuming~which can be
done without loss of generality! that the surfaceS is orthogo-
nal to z ~thusdSW 5drW 8!, Eq. ~A1! can be rewritten as

c~rW !5c~rW ,z!5E c~rW 8,z8!x~rW 2rW 8,z2z8!drW 8,

~A3!

where the propagatorx is explicitly given by

x~rW2rW8!5x~rW 2rW 8,z2z8!5
2 ik

2p~z2z8!

3expF ikS ~z2z8!1
urW 2rW 8u2

2~z2z8! D G . ~A4!
t

h
o-
e-

e

of
a-

d

e
s

g

It can be immediately verified, by inspection, thatx* (rW)
5x(2rW), thus complex conjugation ofx is equivalent to
reversal of propagation direction. In the specific case ofz8
5z, Eq. ~A4! yields singularity andx is undefined. However
the limit of x for z8→z can be defined. It is easy to show
through direct integration, that, forz8Þz, x fulfills the rela-
tion

E x~rW 2rW 9,z2z9!x~rW 92rW 8,z92z8!drW 9

5x~rW 2rW 8,z2z8!. ~A5!

On the other hand, substitutingz85z into the left-hand side
of Eq. ~A5! and integrating yields the result

E x~rW 2rW 9,z2z9!x~rW 92rW 8,z92z!drW 95d~rW 2rW 8!,

~A6!

whered is a Dirac delta function. Comparison of Eqs.~A5!
and ~A6! yields

lim
z→z8

x~rW 2rW 8,z2z8!5d~rW 2rW 8!. ~A7!

It is possible, using the results above, to describe the g
eral propagation process, where a wave front emitted fro
source located atz5z0 interacts with a series of optical ele
ments located atz1 ,...,zn along the propagation axis. As
suming that the action of the element located atzm ~for m
51, . . . ,n! amounts to multiplication of the wave amplitud
by Um(rW m), an iteration of Eq.~A3! yields the result

c~rW ,z!5E c~rW 0 ,z0!x~rW 12rW 0 ,z12z0!U1~rW 1!¯

3x~rW n2rW n21 ,zn2zn21!Un~rW n!

3x~rW 2rW n ,z2zn!drW 0¯drW n . ~A8!

The similarity between Eq.~A8! and quantum-mechanica
path-integral formalism is noteworthy.

The formalism described so far applies to the most g
eral paraxial situation, where the wave front at any spec
location z depends on both transverse coordinates. This
per, though, deals with the ‘‘reduced’’ case, where the ori
nal wave and all the optical elements vary in only one tra
verse dimension~which will be taken asx, for definiteness!
and the other transverse dimension can be integrated a
Introducing the notationcz(x)5c(x,z) and performing the
y integration in Eq.~A3!, with x given by Eq.~A4!, the wave
propagation in this~transverse, 1D! case is found to be de
scribed by

cz~x!5E c0~x8!x~x2x8,z!dx8, ~A9!

where the ‘‘reduced’’ propagator is given by

x~x2x8,z!5S 2 ik

2pzD
1/2

expF ikS z1
ux2x8u2

2z D G . ~A10!
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The wave amplitude can be used to evaluate average
ues. Assuming that c is normalized @i.e., that
*c* (x)c(x)dx51#, the average value of an operatorO(x)
is given by

^O&5E c* ~x!O~x!c~x!dx. ~A11!

Using Eq.~A9!, Eq. ~A11! can be converted into an averag
involving the source amplitudec0 as

^O&5E c0* ~x9!c0~x8!dx8dx9E x* ~x2x9,z!O~x!

3x~x2x8,z!dx

5E c0* ~x9!$O%c0~x8!dx8dx9, ~A12!

where$O% is the result of preaveragingO(x) with the propa-
gators alone. It is convenient, for the purpose of the integ
tion, to replacex8,x9 with the variablesu,n defined through

x85u2n/2, x95u1n/2. ~A13!

It can be immediately verified that the Jacobian of this tra
formation is 1. Using the new variables we get

x~x2x8,z!x* ~x2x9,z!

5
k

2pz
expF ik~x92x8!

z S x2
x82x9

2 D G
5

k

2pz
expS ikn~x2u!

z D . ~A14!

Multiplying ~A14! by xn and integrating overx, it can be
shown that

$xn%5S u1
z

ik

d

dn D n

d~n!, ~A15!

whered is the Dirac delta function and the delta derivativ
are used in the standard mathematical meaning. Espec
we have$1%5d(n). Other than 1, the most commonly o
curring operators arex2, u2, and (xu1ux), whereu is, up to
a constant, a derivative with respect tox @see Eq.~2.2!#. The
averages of these operators involve integrals of the fo
~A15!. With some algebra we get

$x2%5u2d~n!1
2zu

ik
d8~n!2

z2

k2 d9~n!,

H 1

2
~xu1ux!J 5

u

ik
d8~n!2

z

k2 d9~n!, ~A16!

$u2%52
1

k2 d9~n!.

At times it may be convenient to include additional fa
tors, beyond the propagators, in the preaveraging. W
dealing with the Gaussian aperture case the wave functioc
is multiplied by an ‘‘aperture amplitude’’ of exp(2x2/4d2).
Thus all the partial averages are of the form
al-

a-

-

lly,

m

n

$O~x!%d5H expS 2
x2

4d2DO~x!expS 2
x2

4d2D J . ~A17!

It should be noted that the aperture amplitude changes
normalization of the wave function. Therefore, assuming
original c was normalized, averages of the form~A17!
should be multiplied by a normalization factor of the form

N5F E c0* ~x9!$1%dc0~x8!dx8dx9G21

5S E c0* ~x9!H expS 2
x2

2d2D J c0~x8!dx8dx9D 21

.

~A18!

In the following N will be ignored, with the understandin
that it is to be included when the final averages are ca
lated. As before, the main interest is in the averages of
quadratic quantitiesx2, u2, and (xu1ux). The results are

$x2%d5d2S 12
k2d2n2

z2 D $1%d ,

H 1

2
~xu1ux!J

d

5
d2

z S 12
ikun

z
2

k2d2n2

z2 D $1%d ,

~A19!

$u2%d5F 1

4k2d2 1
d2

z2 1
1

z2 S u2
ik d2n

z D 2G$1%d ,

where

$1%d5
kd

A2pz
expF2S k2d2n2

2z2 1
ikun

z D G . ~A20!

If the initial wave is given in the angle representation, t
results are simpler. The Fourier transform ofx from Eq.
~A10! is

x̃~u,z!5E x~w,z!exp~2 ikuw!dw

5S 2 ik

2pzD
1/2E expF ikS z1

w2

2z
2uwD Gdw

5expF ikzS 12
u2

2 D G . ~A21!

Now, Eq. ~2.1! yields

c̃z~u!5A k

2p E cz~x!exp~2 ikux!dx

5A k

2p E c0~x8!exp~2 ikux8!dx8

3E x~x2x8,z!exp@2 iku~x2x8!#dx

5expF ikzS 12
u2

2 D G c̃0~u!5x̃~u,z!c̃0~u!.

~A22!
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Therefore the propagation is represented by a simple m
plication and calculations of averages are done using
source amplitudes directly, with no intermediate integrati
At times, though, it is convenient to use a mixed represe

tion, wherec̃z(u) is represented in terms ofc0(x). From Eq.
~A22!

c̃z~u!5expF ikzS 12
u2

2 D G c̃0~u!

5A k

2p E expH ikFzS 12
u2

2 D2xuG J c0~x!dx

5E z~x,u,z!c0~x!dx, ~A23!

where the ‘‘mixed’’ propagatorz(x,u,z) is identified as

z~x,u,z!5A k

2p
expH ikFzS 12

u2

2 D2xuG J . ~A24!

Using the mixed representation, averages are calcul
through

^O&5E c0* ~x9!c0~x8!dx8dx9E z* ~x9,u,z!

3O~u!z~x8,u,z!du

5E c0* ~x9!$O%c0~x8!dx8dx9, ~A25!

where$O% is now a partial average overu. It is easy to show,
using the variablesu,v from Eq. ~A13!, that

z~x8,u,z!z* ~x9,u,z!5
k

2p
exp~ ikun!. ~A26!

Multiplying Eq. ~A26! by un and integrating overu yields

$un%5S 1

ik

d

dn D n

d~n!, ~A27!

similar to Eq.~A15!. Especially we have$1%5d(n).
Equations~A24! and ~A25! can be used to evaluate th

averages ofx2, u2, and (xu1ux), replicating the results o
Eq. ~A16!. More interesting, though, is the case of a Gau
ian ‘‘momentum aperture,’’ the effect of which is to multipl
the angle amplitude by exp(2u2/4d2), similar to the position
aperture discussed above. Thus, similar to Eq.~A17!, the
partial averages are of the form

$O~u!%d5H expS 2
u2

4d2DO~u!expS 2
u2

4d2D J . ~A28!

Up to a normalization factor@as in Eq. ~A18!, with $1%d
replacing$1%d# which, again, is needed here, the averages
the quadratic factors are now
ti-
e
.

a-

ed

-

f

$x2%d5S 1

4k2d2 1d2z21~u1 ikd2zn!2D $1%d ,

H 1

2
~xu1ux!J

d

5d2zS 11
ikun

z
2k2d2n2D $1%d ,

~A29!

$u2%d5d2~12k2d2n2!$1%d ,

where

$1%d5
kd

A2p
expF2S k2d2n2

2 D G . ~A30!

APPENDIX B: GEOMETRICAL PHASE SPACE
APPROACH TO BEAM PROPAGATION

The discussion of beam propagation in this appendix
purely geometrical. Wave properties are ignored and
beam is represented by an intensity distribution in one tra
verse dimension~thus a 2D phase space! I z(x,u), which
propagates along thez axis. For the sake of convenienceI z is
assumed to be normalized, i.e.,* I z(x,u)dx du51. Using the
notation

rW 5S x
u D , ~B1!

for an individual phase space point, the distributionI z , for
any specific value ofz, can be characterized by the matrix

V5^rW rW T&5S ^x2& ^xu&

^ux& ^u2&
D 5S Vxx Vxu

Vux Vuu
D , ~B2!

where

^x2&5E I z~x,u!x2dx du,

^u2&5E I z~x,u!u2dx du, ~B3!

^xu&5^ux&5E I z~x,u!xu dx du.

In the paraxial approximationrW transforms linearly under
the action of propagation and/or optical elements, i.e.,rW 8
5TrW whereT is a linear operator. According to the defin
tion ~B2!, the resulting transformation ofV is V85TVT T.
Since, as a consequence of Liouville’s theorem, the dete
nant of V remains invariant under all such transformation
the operatorT must fulfill uTu561. The invariance ofuVu
allows us to define the invariant emittance of the beam« by

«25uVu5^x2&^u2&2^xu&2. ~B4!

Of special interest are locations along the beam axiz
whereV is diagonal. Such locations will be referred to
‘‘sources.’’ In the following it will be shown that any beam
has a ‘‘source.’’ At the source location
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V5S sx
2 0

0 su
2D ~B5!

and

«25sx
2su

2. ~B6!

But, as« is invariant, Eq.~B6! viewed as an expression of«
in terms of the source’s spatial and angular dimension
valid everywhere, thus the relation«5sxsu can be used as
an alternative definition of emittance.

The operator corresponding to a propagation over a
tancez is

Tz5S 1 z

0 1D . ~B7!

Note that, indeed,uTu51. V, in this case, transforms accord
ing to

V85TzVT z
T5S Vxx1z~Vxu1Vux!1z2Vuu Vxu1zVuu

Vux1zVuu Vuu
D .

~B8!

Especially, choosing

z52zs52
Vxu

Vuu
~B9!

yields

V85S Vxx2
Vxu

2

Vuu

0

0 Vuu

D 5S «2

Vuu
0

0 Vuu

D . ~B10!

Therefore, a beam with an arbitraryV can be described a
propagating over distancezs , from a source with sizes
sx ,su , given by

sx
25

«2

Vuu
5Vxx2

Vxu
2

Vuu
,

~B11!
su

25Vuu .

Focusing of the beam can be similarly described. A
vice with focal lengthF is represented by the operator

TF5S 1 0

2
1

F
1D , ~B12!

yielding

V85TFVTF
T

5S Vxx Vxu2
1

F
Vxx

Vux2
1

F
Vxx Vuu2

1

F
~Vxu1Vux!1

1

F2 Vxx

D .

~B13!
is

s-

-

This transformation changes the original beam to one co
sponding to a new source with different source parame
sx8 ,su8 ,zs8 . The new parameters can be found using E
~B9! and ~B11!. Expressed in terms of the original param
eters the results are

s8x
25

F2sx
2su

2

sx
21~F2zs!

2su
2 ,

s8u
25

sx
21~F2zs!

2su
2

F2 , ~B14!

zs85
F@zs~F2zs!su

22sx
2#

sx
21~F2zs!

2su
2 .

The effect of apertures is easiest to analyze for Gaus
beams. These are beams with a~normalized! intensity distri-
bution given by

I ~rW !5
1

2p«
expS 2

1

2
rW TQrW D , ~B15!

where

Q5V215
1

«2 S ^u2& 2^xu&

2^ux& ^x2&
D . ~B16!

Now, the effect of a general Gaussian aperture can be re
sented by

I 8~rW !5I ~rW !expS 2
1

2
rW TSrW D , ~B17!

whereS is a symmetric, semipositive operator. For beams
the form ~B15! the action of the aperture amounts to t
substitution

Q85Q1S. ~B18!

Based on the fact that bothQ andS are positive operators, i
is easy to show that an aperture reduces the emittance a

1

«82 5uQ8u>uQu5
1

«2 . ~B19!

The basic apertures are position and angle~momentum!
apertures. A position aperture is represented by

S5S 1

d2 0

0 0
D , ~B20!

generating the newQ andV operators



,
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Q85
1

«2 S ^u2&1
«2

d2 2^xu&

2^ux& ^x2&
D→V8

5
d2

d21^x2& S ^x2& ^xu&

^ux& ^u2&1
«2

d2
D . ~B21!

The new emittance is

«825
d2«2

d21^x2&
. ~B22!

The angle~momentum! aperture calculation is similar
with an 1/d2 term at the~uu! location ofS instead of the 1/d2

term at the~xx! location @see Eq.~B20!#. The newQ andV
in this case are
Q85
1

«2 S ^u2& 2^xu&

2^ux& ^x2&1
«2

d2
D→V8

5
d2

d21^u2& S ^x2&1
«2

d2 ^xu&

^ux& ^u2&
D , ~B23!

and the new emittance is

«825
d2«2

d21^u2&
. ~B24!

The modified source parameters generated by both ty
of apertures are listed in Table II.
.
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